# Wise Use of Nitrogen on Hill Country Pastures: Waikiekie

#### Facilitator: Bob Thomson bob@bobthomson.

AgResearch Greg Lambert greg.lambert@agresearch.co.nz search inth N Centre w Zealand Ph. 06 356 8019

Projected lamb weights

27.3

28.3

29.0

29.8

31.3 32.3

Assume lamb weight 19.9 kg LW on 26<sup>th</sup> Oct 06

Wean date Weight Birth rank Gain per day \$/kg LW

Mixed

Mixed

Mixed

Mixed

Mixed

Mixed



Context

Monitor group: Waiotira & Maungaturoto

Farmers: David and Erin Gunson

Location: Waikiekie

Rainfall: Averages 1506 mm

### **Projects**

### 2004 30 kg lamb project

The rationale was that if lamb weights could be improved the positive spin-off would be huge – marketing early, higher prices, heavier ewes etc

Two paddocks of 6.3 ha and 8.3 ha were used as Control and Treatment

90 kg N was applied to the Treatment area in August, September and October. 37 kg N was applied on the Control area in August.

# 2005 Whole farm project

N application rates were increased to 108 kg N per ha on average, across the whole farm, with dressings from June to November.

- Expected extra production and profit
- Grow more pasture both quantity and quality
- More opportunities to trade both cattle and sheep
   Cranked up stock numbers: ~1000 more sheep, ~100 more cattle.

# 2006 Whole farm project

N application rates were reduced from 108 kg N to 81 kg N per ha on average, across the whole farm, with dressings from June to November.

Expected extra production and profit:
 Grow more pasture - both quantity and quality
 Hopefully more opportunities to trade both cattle and sheep.

# **Pasture** production

Standardised to ME 10.8



#### Annual pasture production:

| Plan 05/06   | <b>7483</b> kg DM/yr |
|--------------|----------------------|
| Actual 05/06 | 7193                 |
| Actual 06/07 | 6848                 |





Farming, Food and Health. First Te Ahuwhenua. Te Kai me te Whai Ora. Tuatahi

### Results

Sheep

and

| As at 1st July | 2003/04 | 2004/05 | 2005/06 | 2006/07 | 2007/08 |
|----------------|---------|---------|---------|---------|---------|
| Trading ewes   |         |         | 593     | 672     | 200     |
| Breeding ewes  | 1033    | 1100    | 1232    | 1149    | 1271    |
| Ewe hoggets    | 334     | 325     | 505     | 655     | 750     |
| Wether hoggets | 76      | 300     | 380     | 210     | 0       |
| Rams           | 15      | 15      | 30      | 22      | 22      |
| Total sheep    | 1458    | 1740    | 2740    | 2708    | 2243    |
|                |         |         |         |         |         |



| Cattle | As at 1st July | 2003/04    | 2004/05    | 2005/06    | 2006/07 | 2007/   |
|--------|----------------|------------|------------|------------|---------|---------|
| Cuttle | Breeding cows  | 144        | 100        | 124        | 108     | 122     |
|        | R 2 yr heifers |            |            |            | 5       | 0       |
|        | R 1 yr heifers | 105        | 74         | 71         | 91      | 45      |
|        | R 1 yr bulls   | 297        | 300        | 397        | 309     | 345     |
|        | R 2 yr bulls   | 30         | 50         | 67         | 51      | 0       |
|        | Breeding bulls | 5          | 5          | 6          | 3       | 3       |
|        | Total cattle   | 604        | 529        | 665        | 567     | 515     |
|        |                |            |            |            |         |         |
| 2006   |                |            | Mating wts | Scanning % | 5 Dry % | Docking |
| Mating | Tra            | ading ewes | 59         | 163        | 3.6     | 121     |
|        | ¼ Finn x Romne | 62         | 181        | 1          | 148     |         |

62

41.5



220

250

270

200

230

250

\$1.75 \$1.75

\$1.75

\$1.65

\$1.65

\$1.65

#### Example lamb weights Spring 2006

¼ Finn x Romney 2-tooths

*lambing* Ewe hoggets (312 mated)

| Date 06 | Weight | Birth rank | <i>SR/ha</i> | Gain/d        |
|---------|--------|------------|--------------|---------------|
| 17 Oct  | 22.0   | Mixed      | 9.0          | 313 Black     |
| 18 Oct  | 20.5   | Twins      | 8.0          | 311 Face from |
| 18 Oct  | 20.5   | Twins      | 8.0          | 311 Trading   |
| 19 Oct  | 27.0   | Singles    | 10.0         | 417 Ewes      |
| 24 Oct  | 19.0   | Twins      | 8.0          | 254           |
| 25 Oct  | 19.5   | Twins      | 8.0          | 258           |
| 26 Oct  | 19.5   | Twins      | 8.0          | 254 WF        |
| 27 Oct  | 19.5   | Twins      | 8.0          | 250 lambs     |
| 27 Oct  | 18.0   | Twins      | 8.0          | 226           |
| 28 Oct  | 22.0   | Twins      | 8.0          | 286           |
| 29 Oct  | 22.0   | Singles    | 10.0         | 273           |

#### Nitrogen value

Re

| Purchase Urea          | \$500 / tonne    |
|------------------------|------------------|
| Apply Urea             | \$126 / tonne    |
| Apply 100 kg N/ha      |                  |
| (Urea 46% N) =         | \$127 / hectare  |
| Response rates         | 100 kg N applied |
|                        |                  |
| 10 kg DM/unit N        | 1000 kg DM/ha    |
| 15 kg DM/unit N        | 1500 kg DM/ha    |
| 20 kg DM/unit N        | 2000 kg DM/ha    |
| turne v Deenenee Detec | Cost /kg DM      |
| turns x Response Rates | Cost/kg DM       |
| 10 kg DM/unit N        | \$0.14           |
| 15 kg DM/unit N        | \$0.09           |
| 20 kg DM/unit N        | \$0.07           |
|                        |                  |

Lessons we've learnt

make nitrogen pay at current prices:

You need a 15:1 response to

- Fodder alternative - Value of winter feed.

- Hit the 'sweet' times

how you use nitrogen - How to utilise the extra feed

- What return will you get.

- September 2005 - May 2006.

#### Profit analysis per ha

29 Nov 06

15 Dec 06

181

138

1

12

|                | 2003/04 | 2004/05 | 2005/06 | 2006/07    |
|----------------|---------|---------|---------|------------|
| Carcase weight | 290     | 279     | 260     | 306*       |
| Gross Income   | \$936   | \$883   | \$834   | \$795*     |
| Expenditure    | \$408   | \$407   | \$451   | \$437*     |
|                |         |         |         | *-estimate |



# Wise Use of Nitrogen on Hill Country Pastures: Bay of Plenty

#### Facilitator: Mark Macintosh mark.mac@agfirst.co.nz

AgResearch Rex Webby scientist: rex.webby@agresearch.co.nz Ruakura Research Centre Hamilton, New Zealand Ph. 07 856 2836



WISE

Context

- Farm: Mackintosh Farm.
- Farmer: Tim Mackintosh leases the farm from his parents.
- Location: Manawahe, 23 km SW of Whakatane and 38 km NE of Rotorua.
  - Size: 498 ha, of which 225 ha is effective.
- Rainfall: Averages 2,100 mm and is generally well spread.
- Stocking Composite breeding ewes (58% of stock units), all mated policy: to a blackface sire producing 150% lambs which are all finished at 16.0-16.5 kg cwt. Replacements are purchased in as two tooths. 50-60 beef breeding cows are run to assist with land development and utilise off farm grazing under trees. Traditionally up to 150 dairy grazers have been run but have now been replaced with trading cattle.

### Method

Three treatments of 0 N/ha (control), 80 N/ha, and 160 N/ha were selected on a site with three hill paddocks of similar size and contour.

Each paddock represented a treatment:



The nitrogen was applied in the form of urea, split dressings in April and August.

■ All treatments received a similar grazing management with rotating ewes other than the lambing period when they were set stocked. Dairy heifers were used in the autumn if necessary to tidy up pastures.

Pasture growth for each treatment was determined by modeling the management utilising Stockpol computer software. Growth was also measured via cages (4 per treatment) during the lambing period in addition to pasture composition via dissection from the cuts.

Animal liveweights were also monitored on and off the treatments during the lambing period only.



### Results

### 2005/6

These results were not expected, especially the negative growth response for the nitrogen treatments with the pasture cuts. It was concluded the cages in the control area were on relatively easier country and in future need to be carefully placed on similar contour/aspect to the treatment paddocks.

Nitrogen altered the pasture composition by increasing the ryegrass and reducing the clover.

There was no significant difference in stock performance between treatments.

### 2006/7

In the second year the results were more in line with expectation, with a positive pasture growth response shown to nitrogen especially with the pasture cuts over the lambing period.

The 80 N/ha treatment produced a good net return per hectare unlike the 160 N/ha treatment which produced a slight loss.

As for the first year, nitrogen increased the ryegrass and decreased the clover components o the pasture.

|    |            |                          | 0 N/ha  | 80 N/ha | 160 N/ha |
|----|------------|--------------------------|---------|---------|----------|
|    |            | Pasture growth kg DM/ha  | 8,545   | 8,062   | 10,223   |
|    | analysis   | Liveweight/ha            | 548     | 521     | 605      |
|    |            | Return/ha                | \$1,080 | \$854   | \$1,097  |
|    |            | Net return/ha            | \$1,080 | \$758   | \$905    |
|    |            | Relative net return/ha   |         | -\$322  | \$176    |
| e  |            | N response kg DM/kg N    |         | -6      | +16      |
|    | Pasture    | Pasture growth - 90 days | 3,695   | 3,604   | 3,026    |
| ır | cuts       | Return/ha - 12c/kg DM    | \$355   | \$346   | \$290    |
|    |            | Net return/ha            | \$355   | \$231   | \$60     |
|    |            | Relative net return/ha   |         | -\$124  | -\$295   |
|    |            | N response kg DM/kg N    |         | -2      | -7       |
| d  | Dissection | Ryegrass %               | 54      | 73      | 72       |
|    |            | Clover %                 | 15      | 6       | 8        |
| nt |            | Weed %                   | 7       | 7       | 3        |
|    |            | Other %                  | 24      | 24      | 17       |

|                      |                          | 0 N/ha | 80 N/ha | 160 N/ha |
|----------------------|--------------------------|--------|---------|----------|
| Stockpol<br>analysis | Pasture growth kg DM/ha  | 7,316  | 7,373   | 7,819    |
| unuiysis             | Liveweight/ha            | 365    | 372     | 504      |
|                      | Return/ha                | \$634  | \$680   | \$815    |
|                      | Net return/ha            | \$634  | \$584   | \$623    |
|                      | Relative net return/ha   |        | -\$49   | -\$11    |
|                      | N response kg DM/kg N    |        | +4      | 0        |
| Pasture              | Pasture growth - 90 days | 1,267  | 3,330   | 3,577    |
| cuts                 | Return/ha - 12c/kg DM    | \$122  | \$320   | \$343    |
|                      | Net return/ha            | \$122  | \$204   | \$113    |
|                      | Relative net return/ha   |        | \$83    | -\$9     |
|                      | N response kg DM/kg N    |        | 41      | 23       |
| Dissection           | Ryegrass %               | 13     | 52      | 55       |
|                      | Clover %                 | 8      | 4       | 3        |
|                      | Weed %                   | 6      | 9       | 6        |
|                      | Other %                  | 73     | 35      | 36       |
|                      |                          |        |         |          |

### **Key conclusions**

Based on these findings, it is difficult to define a clear conclusion as to the response and financial return from the application of nitrogen over the two years of the trial.

The following conclusions are made concentrating mainly on the second year results which are deemed to be more credible than the first year:

Nitrogen effectively produces extra pasture with responses of 23-41 kg DM/kg N applied in the early spring.

These responses translate into a good profit for the 80 N/ha treatment but a loss for the 160 N/ha treatment. This indicates the breakeven nitrogen response is in the vicinity of 25:1.

■ Nitrogen alters the pasture composition by increasing the ryegrass and reducing the clover components.

# Wise Use of Nitrogen on Hill Country Pastures: Waitomo

#### Facilitator: Darren McNae darren.mcnae@agfirst.co.nz

AgResearch Rex Webby rex.webby@agresearch.co.nz Ruakura Research Centre Hamilton, New Zealand Ph. 07 856 2836





WISE

Group: Waitomo Farmers: Sue and Keith Smart

Farm: 15kms North of Pio Pio, Northern King Country

Effective size: 440ha

Context

Average rainfall: 2300mm (even spread)

Topography: Rolling to steep country - 400m ASL

Stocking policy: Sheep 1850 MA ewes (140% sts), 800 hoggets (60% sts) Beef 450 cattle (70:20:10 steers / bulls / grazing heifers) Productivity 300 kg c /c / ha, Winter 740 kg LW / ha

Fertility: pH - 5.9, P - 15, K - 6, S - 27, Mg - 11 N.B: Very high sulphur levels

Previous N use: Average 37 kg N / ha / annum

#### Objective

To increase overall stocking rate on one area of the farm and establish the cost benefit of this compared to the base farming operation.

#### Method

- An 80 ha block of the farm was monitored as a separate farmlet
- All stock movements tracked and valued.
- Block ran predominantly R2yr steers due to subdivision and logistics.

Nitrogen was applied during spring and autumn months to the area to boost pasture growth and free up land for lambing ewes.

Block was also used to provide "clean" pasture for ewe hoggets during the late summer / autumn.

Total rates applied:

2005/06 34

2006/07



## Results

#### Environmental

Pugging and soil damage became a concern

Water quality monitoring at two catchment outpoints in the first two years showed no signs of degradation. Long term monitoring required.

Nitrogen leaching rates of 20 kg N / ha on base farm compared to 34 kg N / ha on project area (as estimated using OVERSEER model). Related to high cattle stocking rate.

Ragwort control became an issue due to the predominantly cattle system.

#### System comparison

| Overall<br>project   |                                                                          | Base system             | N project           | % difference      |
|----------------------|--------------------------------------------------------------------------|-------------------------|---------------------|-------------------|
| results<br>averaged: | Average kg LW carried<br>Gross kg DM / ha (excl.<br>Total pasture loss** | 685<br>N)* 8,359<br>13% | 893<br>9,419<br>16% | +30<br>+12<br>+23 |
|                      | Gross margin (\$ / ha)<br>Gross margin (c / kg DN                        | 406<br>1) 8.4           | 519<br>7.9          | +27<br>-6         |

otential estimated using Farmax Pro. of gross growth lost due to decay, and suboptir

The system overall grew significantly more grass than the base farming operation. This is credited to the higher pasture covers carried through most of the year (on average 300 - 500 kg DM / ha above the base farm).

Overall return / ha higher but lower / kg DM consumed.

With very high sulphur (S) levels on farm the overall benefit of S is limited. Therefore applying N as DAP as opposed to Urea significantly lowered the overall cost. This also shows a significant difference in the break even response rate:

|                                                        | At 36  | kg N/ha |
|--------------------------------------------------------|--------|---------|
|                                                        | DAP    | Urea    |
| Applied cost (c/kg N)                                  | \$0.68 | \$1.40  |
| Breakeven response<br>rate (kg DM / kg N) <sup>*</sup> | 7.1    | 14.7    |

a.sc/kg DM (excluaing Mitrogen cost)



# **Key conclusions**

Stand alone applications of nitrogen to hill country cattle finishing systems were marginal: however, there is benefit in reducing stocking rate on the remainder of the farm during lambing.

• Window for an economic pasture response rate in spring at this altitude is narrow and the timing of nitrogen application in spring is crucial.

• Heavy cattle on light ash soils is not a sustainable farming practice.

Need to factor in total nutrients required into costings to maximise the overall return i.e. DAP vs Urea.

Sheep breeding systems hold the key to a positive economic outcome on steep country.



Farming, Food and Health. First Te Ahuwhenua. Te Kai me te Whai Ora. Tuatahi The project team wishes to acknowledge the funders:



# Wise Use of Nitrogen on Hill Country Pastures: Manawatu

#### Facilitator: John Stantiall john@wilsonkeeling.co.nz

AgResearch scientist: **Greg Lambert** greg.lambert@agresearch.co.nz New Zealand Manawatu Kimbolton Ian & Annie Harvey Farmers: 750 ha hill country total 27% flats, 30% medium hill, 43% steep hill Farm details Climate: 1300 mm rain annually, prone to dry summers Breeding ewes & R 2 Yr bulls on hills Farm svstem: Cattle & lamb finishing on flat & easy land To investigate the boundaries for stocking rates and stock performance using nitrogen-boosted Purpose: Two paddocks used for each treatment initially Method Measurements from pre-lamb to weaning Application Nitrogen applied (kg N/ha) rates Ewes/ha Jul Aug Sept Oct Total 11 13 15 2003 50 0 0 50 50 80 50 80 0 30 100 190 50 80 100 110 190 260 13 15 17 60 80 110 0 30 50 2004 Results Pasture response range: 2003 16:1 to 27:1 kg DM per kg N applied 2004 7:1 to 10:1 kg DM per kg N applied Animal production: Ewes/ha Weight of lamb weaned (kg LW/ha) 2003 2004 11 504 579 667 692 756 13 15 848 Economic Advantage over base (GM \$/ha) (based on un-replicated trial data) comparison 2003 2004 Base 11 ewes/ha 13 ewes/ha Ewes/ha

|                                                                  | 13<br>15<br>17                                                                                                | \$107/ha<br>\$75/ha<br>-                                                        | \$0/h<br>\$67/l |                 |                    |                    |
|------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------|-----------------|--------------------|--------------------|
| Environmental<br>impact<br>(using<br>"Overseer"<br>projections): |                                                                                                               |                                                                                 | NZ<br>av.       | Farm<br>Nil N   | Farm<br>30 kg N/ha | Farm<br>60 kg N/ha |
|                                                                  | Nitrogen inputs<br>Clover N (kg N/ha)<br>Fertiliser N (kg N/ha)<br>Environmental losses<br>Leaching (kg N/ha) |                                                                                 | 5-20            | 96<br>0<br>12   | 86<br>30<br>13     | 76<br>60<br>14     |
|                                                                  | Direct winte<br>N <sub>2</sub> 0 emi                                                                          | Direct winter loss (kg N/ha)<br>N <sub>2</sub> 0 emissions (kg N/ha)<br>Indices |                 | 0<br>1.4        | 0<br>1.8           | 1<br>2.2           |
|                                                                  | Farm N S                                                                                                      | sation (kg N/ha)<br>urplus (kg N/ha)<br>n efficiency (%)                        | 30-80<br>15-20% | 55<br>78<br>19% | 67<br>98<br>16%    | 78<br>118<br>13%   |

### Conclusions

The first two extra ewes/ha, using in the order of 100 kg N/ha appears to be the most profitable and most reliable gain for the 2003-04 and 2004-05 seasons.

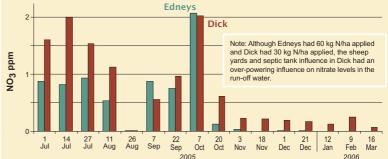
Using extra nitrogen to increase stocking to high rates brings more risk and more stress.

Responses to nitrogen may be marginal or negative if the benefits are not captured or if the cost-price balance is less favourable than the figures used in these analyses.

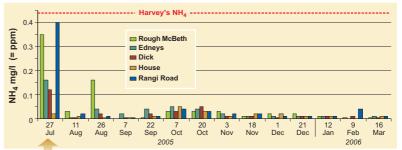
Using nitrogen on part of the farm (e.g. the "twinning" country) appears to be a good strategy. (However, this may not hold true in the future, and a financial analysis should be undertaken on a case by case basis.)

Based on "Overseer" results, the rate of nitrogen leaching, the direct winter nitrogen loss and nitrate concentration in drainage water are all within acceptable levels for inputs of 30 and 60 kg N/ha.






Farming, Food and Health**. First** *Te Ahuwhenua, Te Kai me te Whai Ora. Tuatahi* 


|                                                        |                                     |                |                        |                                   | SENU          |  |
|--------------------------------------------------------|-------------------------------------|----------------|------------------------|-----------------------------------|---------------|--|
| Wator                                                  | monitorin                           | <b>a</b> 20    | 05-2006                |                                   |               |  |
| water                                                  |                                     | <b>Y</b> (info | mation supplied by Mai | lcolm Todd, Horizons Regional Cou | ncil)         |  |
| Paddock treatments for the water quality investigation |                                     |                |                        |                                   |               |  |
| Paddock name                                           | Rough McBeth                        | Edneys         | Dick                   | House<br>(Sub-catchment of Dick)  | Rangi<br>Road |  |
| Fertiliser                                             | 30 kg N/ha<br>as fine particle urea | 60 kg N/       | 'ha 30 kg N/ha         | Yards & house<br>septic tank      | 30 kg N/ha    |  |

| treatment     | 30 kg N/na<br>as fine particle urea<br>in suspension | 60 kg N/ha<br>as urea | 30 kg N/ha<br>as urea | septic tank | 30 kg N/na<br>as urea |
|---------------|------------------------------------------------------|-----------------------|-----------------------|-------------|-----------------------|
| Stocking rate | 13                                                   | 15                    | 13                    | na          | 13                    |
| Area (ha)     | 56                                                   | 37                    | 37                    | 5           | 38                    |

Nitrate run-off measured



Ammonia concentrations in flowing water



#### N applied 27 July.

Ammonia concentration spikes after fertiliser application and heavy stocking intensities (during rotation).

Note: The total nitrogen load from the stock and yards by itself was roughly equal to that of the other paddocks. Also, single events such as heavy rain or mob-stocking can greatly overshadow the impact of relatively small differences in fertiliser inputs. For accurate measurements, continuous water flow measurements, robust sampling protocol and a long time period are required.

### Conclusions

Nutrient runoff from the farm catchments measured appears to be lower than the average sheep/beef farm.

- Farm N output was around 2 to 6 kg N/ha (below the average of 10 kg N/ha for New Zealand sheep and beef cattle farms).

- Farm P runoff was about 0.2 kg/ha, which is low by Overseer standards.

But, values are nudging the water quality guidelines for preventing algal blooms, especially for total phosphate and total nitrate.



# Wise Use of Nitrogen on Hill Country Pastures: Taranaki Taumarunui

| AgResearch<br>scientist:      |        |                                                          | The second s |            | rex.web                                                   | <b>/ebby</b><br>by@agresearch.c<br>search Centre, Hamilton     | <b>o.nz</b><br>n, New Zeala | nd                                 |               |
|-------------------------------|--------|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|------------|-----------------------------------------------------------|----------------------------------------------------------------|-----------------------------|------------------------------------|---------------|
|                               | Та     | iranaki /                                                | Mangamingi 🎽                                                                                                   | $\searrow$ | Ta                                                        | umarun                                                         | ui 🤇                        | Dhura                              |               |
| Farmers:                      |        | Tim & Sue                                                | Hardwick-Smith 🭳                                                                                               | 5          |                                                           | Scott & R                                                      | obyn Gov                    | wer                                | $\mathcal{C}$ |
| Farm<br>details:              | :      |                                                          | l country total 43% steep hill                                                                                 |            | 24                                                        | 730 ha hill<br>1% flats, 51% me                                |                             |                                    | hill          |
| Climate:                      |        | 1400 mm rain/ye                                          | ar, variable summers                                                                                           |            |                                                           | 2200 mm rain/                                                  | year, sun                   | nmer saf                           | e             |
| Farm<br>system:               | Bree   |                                                          | ows with cattle and lan<br>flat & easy land                                                                    | nb         | Breeding ewes and cows with cattle finishing on flat land |                                                                |                             |                                    |               |
| Purpose:                      | To fi  |                                                          | feed supply late win<br>e utilise spring feed                                                                  |            |                                                           |                                                                |                             |                                    | intered       |
| Method:                       |        | One paddo                                                | ck only for each treatn                                                                                        | nent. M    | leasureme                                                 | ents from pre-la                                               | mb to we                    | aning                              |               |
| Application<br>rates:         |        | <i>Spring 200</i><br>24.7 ha 0<br>29.5 ha 1<br>24.3 ha 3 | 8.5                                                                                                            |            |                                                           | <i>Spring 2005</i><br>14.5 ha 0 kg<br>19.5 ha 30<br>14.0 ha 60 |                             | plication                          | ))            |
| Result                        | ts     | _                                                        |                                                                                                                |            |                                                           |                                                                |                             |                                    |               |
| Pasture<br>response<br>range: |        | 5                                                        | DM per kg N applied<br>The nitrogen respo<br>re no paddocks with a n                                           |            | as in the e                                               |                                                                |                             | 5                                  | ed            |
| Animal<br>production:         |        | No weanin                                                | g weight data                                                                                                  |            | (<br>3                                                    | f N/ha Weight o<br>)<br>0<br>0                                 | f lamb we<br>32<br>34<br>45 | 2<br>15                            | g LW/ha)      |
|                               | Anim   | al response was                                          | variable in some situati<br>covers and the                                                                     |            |                                                           |                                                                | ng rate re                  | elative to                         | pasture       |
| Economic<br>comparison:       | 2005   | N application<br>rate (kg N/ha)<br>18.5                  | Advantage over Nil N<br>(GM \$/ha)<br>+\$13/ha                                                                 |            | 2005                                                      | N application<br>rate (kg N/ha)<br>30                          | (                           | tage over<br>GM \$/haj<br>+\$20/ha | )             |
|                               | The ec | 37.0                                                     | +\$27/ha<br>was positive but not h                                                                             | uae. H     | ence the i                                                | 60<br>need to investiga                                        |                             | +\$5/ha                            | ase basis.    |

The economic response was positive but not huge. Hence the need to investigate on a case by case basis

|                                       | A114                                                                                                               | Farm<br>Nil N   | Farm<br>18 kg N/ha | Farm<br>36 kg N/ha | Nitrogen inputs                                                                                                    | Farm<br>Nil N   | Hills 32<br>flats 129 | Hills 64<br>flats 129 |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------|-----------------|--------------------|--------------------|--------------------------------------------------------------------------------------------------------------------|-----------------|-----------------------|-----------------------|
| Environmental<br>impact               | Nitrogen inputs<br>Clover N (kg N/ha)<br>Fertiliser N (kg N/ha)                                                    | 86<br>0         | 80<br>18           | 74<br>36           | Clover N (kg N/ha)<br>Fertiliser N (kg N/ha)                                                                       | 72<br>0         | 53<br>55              | 44<br>80              |
| (using<br>"Overseer"<br>projections): | Environmental losses<br>Leaching (kg N/ha)<br>Direct winter loss (kg N/ha)<br>N <sub>2</sub> 0 emissions (kg N/ha) | 14<br>0<br>16   | 15<br>0<br>1.9     | 16<br>1<br>2.1     | Environmental losses<br>Leaching (kg N/ha)<br>Direct winter loss (kg N/ha)<br>N <sub>2</sub> 0 emissions (kg N/ha) | 17<br>0<br>1.6  | 20<br>1<br>2.4        | 21<br>1<br>2.7        |
|                                       | Indices<br>Immobilisation (kg N/ha)<br>Farm N Surplus (kg N/ha)<br>N conversion efficiency (%)                     | 45<br>72<br>16% | 52<br>84<br>14%    | 60<br>97<br>12%    | Indices<br>Immobilisation (kg N/ha)<br>Farm N Surplus (kg N/ha)<br>N conversion efficiency (%)                     | 34<br>62<br>14% | 58<br>98<br>9%        | 68<br>114<br>8%       |

Taranaki farm

18 kg/ha paddock

Medium hills used for N trial on the Ohura farm





Farming, Food and Health. First



Ohura community

aroup discussion

# Key conclusions: Manawatu, Taranaki and Taumarunui

Nitrogen is often used to cost-effectively fill a feed gap in the August-September period to help maintain stocking rates and stock performance. Using nitrogen on part of the farm (e.g. the "twinning" country) appears to be a good strategy. (However, a financial analysis should be undertaken on a case by case basis).

Responses to nitrogen may be marginal or negative if the benefits are not captured or if the cost-price balance is less favourable than the figures used in these analyses.

If extra nitrogen is used to increase stocking rates through winter and spring, there is more risk and more stress. In the 2003-04 and 2004-05 seasons there was a profitable gain using 100 kg N/ha to lift stocking rate by two extra ewes/ha.

To achieve high stocking rates successfully, a high level of technical planning and monitoring is required. The nitrogen inputs were calculated for the predicted feed demands and pasture growth rates for each particular situation. While information is available on average pasture growth rates, nature will from time-to-time test the most experienced operators. The strategy outlined here is not for faint-hearted nor ill-prepared operators.

For high stocking rates, farmers and staff should be skilled <u>and</u> experienced in feed budgeting, and have an active support network that includes other farmers, consultants and veterinarians.

Before starting a high stocking rate system based on nitrogen use, contingency plans must be in place, outlining the actions to be taken in the case of too little or too much feed and the occurrence of animal health issues.

This strategy is only appropriate where: 1) the farm is well developed (at least 60-100 paddocks, Olsen P levels 15-20 on hill soils, adequate stock water, good access and soils that will cope with a higher stocking rate) and

2) there is already good levels of stock performance (140%+ lambing, weaning weights average 26-28 kg (mid December), and sheep losses are less than 3% of stock numbers wintered) and

 there is a high level of stockmanship and feed budgeting skill in the management team.



Taranaki community group discussion

# Wise Use of Nitrogen on Hill Country Pastures: Hawkes Bay

#### Context

Location of farms: Waipukurau



Stocking policy: Set stocking mid winter (July) vs. rotational grazing / late set stocking (late Aug - immediately pre lamb) with and without 30 kg N/ha.

### Objectives

To test if there is a different level of N response with different grazing regimes.

Observe the impact of grazing management and nitrogen application on feed covers, feed quality and ultimately lamb & ewe liveweight gain to weaning.

■ To observe if there is any variation in ewe lambing deaths between lambing blocks receiving nitrogen compared to non-nitrogen fertilised blocks.

### Treatments

Three farms.

- Two blocks per treatment per farm (i.e. total of 6 blocks per treatment).
- 1. Early July set stock, 8 ewes/ha, nil N.
- 2. Early July set stock, 9 ewes/ha, 30 kg N/ha.
- 3. Rotate to lambing, 8 ewes/ha nil N.
- 4. Rotate to lambing, 9 ewes/ha, 30 kg N/ha.

Set stock early July 1450 kg DM/ha or average of farm at that time. Target was to have1000-1100 kg DM/ha at lambing.

Target cover at lambing for rotational grazed ewes 1250-1350 kg DM/ha.

Apply urea at 65 kg/ha (30kg N/ha) just prior to lambing to both rotated and set stocked blocks with higher (9.0 ewes/ha) stocking rate. Nitrogen applied 16 August 2007.

Additional feed if any to be utilized with cattle and recorded.

• Was anticipated that early set stocked would lower feed covers at start of lambing and put added pressure on the feed covers through lambing and thereby generate differences in responses:

Pasture response to nitrogen Lamb survival Lamb live weight gain through lactation Ewe deaths Ewe body weights at weaning.

#### Measured

- Ewe weights at set stocking early July.
- Ewe weights at set stocking/lambing for non rotated ewes.
- Number of lambs at docking.
- Number and weight of lambs at weaning.
- Ewe weights at weaning.
- Ewe deaths number and cause.
- Record number of bearings and cast ewes.
- Pasture covers fortnightly over the trial period.





Farming, Food and Health. First Te Ahuwhenua, Te Kai me te Whai Ora. Tuatahi

### Facilitator: Roy Fraser royfraser@pggwrightson.co.nz

AgResearch Greg Lambert scientist: greg.lambert@agresearch.co.nz crasslands Research Centr Palmerston North, New Zealand Ph. 06 356 8019

Set Stock vs Late Set Stock



### Data summary

#### Nitrogen vs No Nitrogen

| Nitrogen vs No Nitro           | ogen     | Set Slock vs Late Set Slock |                                |            |  |  |
|--------------------------------|----------|-----------------------------|--------------------------------|------------|--|--|
| Desture severe et lembine      | Nitrogen | No Nitrogen                 | Early                          | SS Late SS |  |  |
| Pasture covers at lambing      |          |                             | Pasture covers at lambing      |            |  |  |
| Farm 1                         | 1212     | 1200                        | Farm 1 1150                    |            |  |  |
| Farm 2                         | 925      | 975                         | Farm 2 875                     |            |  |  |
| Farm 3                         | 1050     | 1050                        | Farm 3 1050                    |            |  |  |
|                                | 1062     | 1075                        | 102                            | 5 1117     |  |  |
| Ewe weight change SS - weaning |          |                             | Ewe weight change SS - weaning |            |  |  |
| Farm 1                         | -2.7     | -1.0                        | Farm 1 -1.2                    |            |  |  |
| Farm 2                         | 2.6      | 4.5                         | Farm 2 1.5                     | 5.6        |  |  |
| Farm 3                         | 6.0      | 3.0                         | Farm 3 5.5                     | 4          |  |  |
|                                | 1.9      | 2.1                         | 1.9                            | 2.2        |  |  |
| Ewe deaths                     |          |                             | Ewe deaths                     |            |  |  |
| Farm 1                         | 1.4%     | 2.3%                        | Farm 1 1.6%                    | 5 2.1%     |  |  |
| Farm 2                         | 0.3%     | 1.3%                        | Farm 2 0%                      | 1.5%       |  |  |
| Farm 3                         | 1.3%     | 2.0%                        | Farm 3 2.0%                    | 1.6%       |  |  |
|                                | 1.0%     | 1.9%                        | 1.2%                           |            |  |  |
| Weaning %                      |          |                             | Weaning %                      |            |  |  |
| Farm 1                         | 184%     | 172%                        | Farm 1 1799                    | 6 178%     |  |  |
| Farm 2                         | 185%     | 186%                        | Farm 2 1939                    |            |  |  |
| Farm 3                         | 176%     | 170%                        | Farm 3 1799                    |            |  |  |
| 1 diffi 0                      | 182%     | 176%                        | 1859                           |            |  |  |
| Lamb lactation growth rate     |          |                             | Lamb lactation growth rate     |            |  |  |
| Farm 1                         | 272      | 283                         | Farm 1 275                     | 281        |  |  |
| Farm 2                         | 254      | 259                         | Farm 2 244                     |            |  |  |
| Farm 3                         | 302      | 292                         | Farm 3 300                     |            |  |  |
| i uni o                        | 272      | 281                         | 276                            |            |  |  |
| Weight lamb weaned/ha          |          | 201                         | Weight lamb weaned/ha          | 210        |  |  |
| Farm 1                         | 501      | 448                         | Farm 1 467                     | 483        |  |  |
| Farm 2                         | 440      | 440                         | Farm 2 416                     | 437        |  |  |
| Farm 3                         | 500      | 420                         | Farm 3 470                     |            |  |  |
| Fain 3                         |          |                             |                                |            |  |  |
|                                | 484      | 434                         | 455                            | 462        |  |  |

### Observations

Season was very unfavorable in terms of pasture production compared to normal. Very wet late winterearly spring then very dry late spring. In all a very tough season when at no time was there considered to be a satisfactory level of feed for lambing ewes.

Set stocking early reduced pasture covers at start of lambing to 1000-1100 kg DM/ha compared to 1100-1200 kg DM/ha for late set stocked.

For individual paddocks observed that set stocking early on low covers (approx. 1100 kg DM/ha) resulted in covers falling to 800-900 kg DM/ha, and these blocks then failed to feed ewes well enough through lactation to maintain ewe weight gain similar to those set stocked either early or late on 1250+ kg DM/ha.

Lamb LWG through lactation was similar on all blocks i.e. early set stocked and late set stocked with & without nitrogen. This suggests that the breeding ewe has the capability to maintain lamb liveweight gain at the expense of bodyweight even when at below optimum levels of nutrition because of poor season and low responses to fertiliser N.

On one farm early set stocking had 26 g/day lower lamb LWG, on blocks where early set stocking occurred on low covers (1100 kg DM/ha) that fell to 800-900 kg DM/ha at lambing.

■ Feed quality remained high throughout the lambing to weaning period on all blocks. This resulted in lamb liveweight gains of 277 g/day and final weaning weights some 3 kg heavier than last season; this was achieved on lower feed covers. This suggests that well controlled pasture covers (1300 -1600 kg DM/ha) will provide much better feed quality than higher covers. Higher clover content on lower pasture covers was also evident.

Nitrogen applied at 30 kg N/ha produced only just enough additional pasture growth to feed the additional one lambing ewe/ha carried. This suggests a nitrogen response in the order of 10 kg DM/kg N applied.

Ewe deaths were low, less than 2% over all farms. On N blocks, ewe deaths were 1% compared to 1.9% on No N blocks. Ewe deaths on Early Set Stock blocks were 1.2% compared to 1.6% on Late Set Stock blocks.

Lambing % (number lambs weaned to ewes set stocked) showed a positive response to both early set stocking (+10%) and to nitrogen (+8%). This was consistent on all farms and treatments.

- Early set stocking had no effect on ewe weight at weaning compared to late set stocking.
- Stocking policy appeared to have no impact on the level of nitrogen response.

There was no difference in weight of ewes at weaning when comparing the nitrogen block ewes to the non-nitrogen block ewes. Remember the stocking rate was 1 ewe/ha higher for the nitrogen blocks.

The impact of stocking rate (plus 1 lambing ewe/ha) for nitrogen, similar weaning weight per ha and improved lambing % resulted in:

No difference in lamb weight weaned/ha for early vs. late set stocked.

Gain of 50 kg lamb weight weaned per hectare from nitrogen vs. no nitrogen.

At \$1.50/kg store lamb value this equates to \$75/ha for cost of \$45/ha for the nitrogen applied.

# Wise Use of Nitrogen on Hill Country Pastures: Dannevirke

#### Context



Farmers: Stuart and Jude Ellingham.

Property "Bywell" is a 612 ha property (564 effective) of which description 95 ha is rolling, and the remainder is medium/steep and location: It is best described as an intensive breeding and finishing unit. Bywell is located in the Whetukura district approximately 35 km north east of Dannevirke. In addition, a further 50 ha property located at Waipukarau is utilised to finish lambs and grow out ewe hoggets for mating and lambing

Management: Policy decisions are made by Stuart and Jude.

- Staff: Two full time labour units.
- Climate: Bywell receives an average rainfall of 1400 mm/yr, and is at an altitude of 360 m to 652 m a.s.l. Pasture growth is strongest in November-January and lowest in July and August (soil temp. 5°C).

Soil fertility: 14 - 20 Olsen F 3 - 7 Sulphate sulphur 6 - 7 Potassium pH 5.9 Historically 75% DAP and 25% Urea applied (40 N, 20P and 20 S/ha)

Development: Subdivided into 85 paddocks. 95ha of improved pasture (last 1 - 5 years), rest native pastures

# Sheep policy

A high performance ewe flock (Highlander's) is maintained on the property. The majority of ewe hoggets are wintered on the Waipukurau property

Lambing performance has fluctuated between 135 - 150% over the past 4 years in the MA Ewes and 60 - 80% in the ewe hoggets

Surplus lambs are sold either prime or store

### **Beef policy**

The beef system is designed to be profitable, simple, flexible, to fit around maximising returns from the sheep system

Purchase yearling bulls in October/November at 200 kg - 250 kg liveweight and kill by the end of December the following year at 330 kg carcass weight.

Bull cells also used to finish lambs post weaning from early January through till April.

### **Project objectives**

To demonstrate the wise use of fertiliser nitrogen under systems, in order to encourage practices that enhance long term farm profitability whilst minimising potential

#### Community group aims

To learn more about the economics of using N in the Ellingham's farming system.

To become more knowledgeable of the effect N has on pasture. soil, water systems, feed and stock management, and profit.

> Farming, Food and Health. First Te Ahuwhenua. Te Kai me te Whai Ora. Tuatahi

- To better understand N response rates
- Why use P when we have N?





Results to date Focus placed on developing and intensifying 100 ha for cattle finishing. Stocking rate lifted from 2.0 to 2.8 bulls/ha.

Take a whole farm approach to nitrogen use.

Monitor effects of 80 kg/ha over whole farm for full year, applied

in May and August and compare to plan and production levels attained in the preceding 2 years.

Monitor pasture growth rates, livestock weight and condition score, pasture composition, loss of nutrients from the soil.

Ewe numbers increased by 1300.

Methods Project commenced early 2005.

- Replacement in lamb ewe hoggets grazed off Bywell
- Phased out of old bull policy into new

40 kg N/ha applied May and 30 kg N/ha applied - 10 kg N/ha applied May and 30 kg N/ha applied August in 2005. Only 40 kg N/ha applied to 45 ha in 2006.

8.6% of total annual feed supply is from nitrogen in 2005

- Spring nitrogen response:
- 1 August application @33 kg N/ha
   N response 27 kg DM/kg N.
- Autumn nitrogen response
- Autominitiogen response.
   16 April application of N @ 36 kg N/ha
   N response rate 23 kg DM/kg N

- Duration of response for both approx. 60 days.

### Nitrogen decision making - conclusions

- Nitrogen can be built into the farm system:
- to increase the number of stock carried on the farm
- to offset deficits in feed supply and improve per head performance of existing stock.
- In the 1st year of the project (2005) on the Ellingham property 80 kg N/ha split equally over April and August was applied to the whole farm and stocking rate was increased to use the projected pasture response to N.

greg@sheppardagriculture.co.n

- In 2006 the cost of N was higher and the projected lamb price was lower, so the economics of using N to increase stocking rate had to be re-evaluated.
- On the Ellingham property the sheep numbers rise and fall according to the economics of N while bull numbers remain fixed by the constraints of how many bulls are needed to stock the bull finishing unit.
- The conclusion of the analysis conducted in autumn of 2006 was that given the price of N of \$1.40/kg N applied and the projected new season average lamb price of \$3.70 (lower than last season), using autumn N to boost stocking rate could not be justified economically. The spring N still appeared economic but would only be applied if covers were low. In August the covers were 150 kg DM/ha above target and so a decision was made not to put on N. Spring N was only applied at 40 kg N/ha

N

immobilised

72

95

to 45 ha, on bull cells, where economics of N use were more favourable.

### **Environmental issues**

#### N losses in leaching/runoff kg/ha/yr N

fixation

99

82



These N losses are at the higher end of the average range of 5-20 kg N/ha/yr for New Zealand sheep and beef farms

#### P losses in runoff

Rate of N (kg/ha/yr)

Old low N 20

New high N 75

P losses in runoff were very low (0.5 to 0.6 kg P/ha/yr) for the easy and steep blocks.

17

28

N leaching loss loss

15

16

The P losses were low because Olsen P levels (11 to 21) are appropriate for the level of pasture production. The higher the soil Olsen P the greater the risk of soil clay particles, enriched with fertiliser P, running off into surface water bodies.

DAP/elemental S was between May and September, where there is a greater risk of intense rainfall events that can wash off a greater amount of recently applied soluble fertiliser P. A small improvement in P loss could be made by applying this fertiliser outside of these months – however, this probably compromises the N strategy.



Increase ewe numbers and graze hoggets off. Finish the majority of male lambs.

Change from original beef cow and weaner bull finishing policy, to yearling to 21/2 yr bull policy only.

Concentration

Р

Replace beef cows with ewes.

of N in drainage water (ppm) Ν requirements leached to maintain Olsen P status at current level (kg N/ha) Old low N Easy Steep Middle blo Rest of fa 22 21 10 2 Old high N Easy Middle block Steep Rest of farm 12 9 22 21 32 New high N Easy Middle block Steep Rest of farm 11 23 21 32

N leached is within the range of an average NZ S&B farm (av. = 5-20 kg N/ha/yr). Old farm system with 40 kg N/ha, predicted N leachate was 8.5 kg N/ha. Old farm system with 80 kg N/ha, N leached predicted at 10.5 kg N/ha. New farm system (more eves + fewer, older cattle) with 80 kg N/ha N leacheate predicted to be 9.5 kg N/ha.

The steep parts of the farm leaches 3 kg N/ha less than easy country due to both lower water infiltration and thus lower drainage and to higher sheep compared to cattle numbers on steep compared to easy country. Cattle urine patches contribute more to leaching than do sheep urine patches.

The concentration in drainage water is below the recommended level maximum for safe drinking water of 11.3 ppm.

# Wise Use of Nitrogen on Hill Country Pastures: Wairarapa

#### **Chris Garland** Facilitator: cigar@bakerag.co.nz **Annette Litherland** AgResearch scientists Coby Hoogendoorn

annette.litherland@agresearch.co.nz coby.hoogendoorn@ Grasslands Research Centre, Palmerston North, New Zealand Ph



WISE

Context

- Farm Castlepoint Station located at Castlepoint location: on Wairarapa coast, 64 km from Masterton.
  - Size: 2952 ha, of which 2794 ha effective
- Climate: Wind flow predominately from NW Average rainfall 970 mm - traditionally summer dry.
- Aspect: 40% northerly, 40% southerly, 10% flat, 10% east/west. Trial concentrated on 68.3 ha of north facing hill country.
- Pasture, Historic pasture growth measurements of this N facing country have found that it significantly under-performs throughout the year compared to the southerly facing and growth flat country.

Traditionally a feed deficit occurs from end of August through to October on Castlepoint Station.

With high wind run through Oct/Nov limiting pasture growth, high value is put on providing adequate feed through early spring to maintain ewe lactation and build ewe condition before it dries out.

#### Methods

■ Year 1 treatments Control 60 kg N/ha 120 kg N/ha replicated in Year 2: 6 sheep/ha 6.6 sheep/ha 8.3 sheep/ha

Initial cattle stocking rates in Year 1 ranged from 0.5/ha to 2.2/ha. In Year 2 cattle were not added until 1st week Oct at 0.3/ha to 1.9/ha.

Trial ran from 8<sup>th</sup> Aug 05 (set stocking) through to 2nd Dec 05 (weaning) in Year 1 & 14<sup>th</sup> Aug 06 to 1<sup>st</sup> Dec 06 this year.

Urea applied in single application 2 weeks prior to set stocking due to

Cost in applying differential applications of urea over small areas with helicopter. Feed pinch occurs from end Aug through to Oct (30-60 days). After

this soil moisture likely to become limiting factor to growth. - Any urea application after this may impact on pasture quality in the late spring.

Trial consists of three set stocking rates of twinning ewes set stocked across the three rates of nitrogen. The stocking rates are topped up with cattle. These stocking rates are replicated.

Wet dry ewes are replaced with ewes with lambs at foot at docking.

R1 vr steers/heifers added or removed throughout trial to try to maintain pasture covers in the 1300-1400 kg DM/ha range.

### Data collected

MA ewe liveweight at set stocking, docking, drenching & weaning. Ewe LWG from set stocking to weaning.
 Lamb LWG from birth to weaning - 5kg birth wt (assumed), weighed

at docking, drenching & weaning.

Docking & weaning %.

Steer LWG, numbers set stocked & time on trial block (cattle grazing days).

Pasture Plan measurements on monthly basis.

Pasture cover measurements taken weekly during trial period and monthly the rest of the year.

Met Station data collection: soil moisture, rainfall, soil & air temperature, wind run & direction & solar radiation (pyronometer).

Mini lysimeter leachate collection & testing.

Stream water sampling & testing.

The project team wishes to acknowledge the funders Sustainable MALT & VOOL A This focus farm project also received additional unding from Meat and Wool New Zealand and the Greater Wellington Regional Council.



Farming, Food and Health. First Te Ahuwhenua. Te Kai me te Whai Ora. Tuatahi

### **Objectives**

by improving feed supply to ewes over early lactation through strategic use of N.

Improve feed quality in late spring through improved pasture utilisation and control.

for Castlepoint Station.

Gather objective water quality data to help inform the debate around the environmental effects of the use of N.

Investigate the accuracy/reliability of water quality testing and modeling for nitrogen leaching on trial blocks.

### **Results**

| Production                   |      | 2005 |       |      | 2006 |       | Av. 2 | 2005 & | 2006  |
|------------------------------|------|------|-------|------|------|-------|-------|--------|-------|
| r ou de chom                 | 0 N  | 60 N | 120 N | 0 N  | 60 N | 120 N | 0 N   | 60 N   | 120 N |
| Sheep                        |      |      |       |      |      |       |       |        |       |
| Ewe stocking rate (ewe/ha)   | 5.2  | 5.3  | 7.6   | 5.9  | 6.6  | 8.1   | 5.55  | 5.96   | 7.83  |
| Lamb LWG (g/d)               | 260  | 270  | 261   | 273  | 283  | 267   | 266   | 277    | 264   |
| Lamb weaning weight (kg)     | 26.6 | 27.4 | 26.6  | 29.3 | 30.2 | 28.8  | 27.9  | 28.8   | 27.7  |
| Lamb LWG/ha                  | 206  | 235  | 304   | 250  | 300  | 346   | 228   | 267    | 325   |
| Ewe weaning weight (kg)      | 66.2 | 68.7 | 69.6  | 66.6 | 69.4 | 66.9  | 66.4  | 69.0   | 68.2  |
|                              |      |      |       |      |      |       |       |        |       |
| Cattle                       |      |      |       |      |      |       |       |        |       |
| Cattle grazing days/ha       | 97   | 156  | 146   | 37   | 61   | 82    | 66.8  | 108.5  | 114.1 |
| Cattle LWG (kg/d)            | 1.2  | 0.9  | 1.6   | 1.4  | 1.5  | 1.4   | 1.3   | 1.2    | 1.5   |
| LWG/ha                       |      |      |       |      |      |       |       |        |       |
| LWG/Ha                       | 113  | 135  | 224   | 54   | 93   | 121   | 83    | 114    | 173   |
|                              |      |      |       |      |      |       |       |        |       |
| N response rate (kg DM/kg N) |      | 10   | 18    |      | 13   | 10    |       | 11     | 14    |

| Cost benefits            | 0 N  | 2005<br>60 N | 120 N | 0 N  | 2006<br>60 N | 120 N |      | 005 &<br>2005<br>60 N |      |      | 005 &<br>2006<br>60 N |      |
|--------------------------|------|--------------|-------|------|--------------|-------|------|-----------------------|------|------|-----------------------|------|
| Lamb price (\$/kg LW)    | 1.5  | 1.5          | 1.5   | 1.4  | 1.4          | 1.4   | 1.5  | 1.5                   | 1.5  | 1.4  | 1.4                   | 1.4  |
| Lamb value (\$/ha)       | 382  | 431          | 562   | 422  | 503          | 587   | 417  | 485                   | 595  | 389  | 453                   | 556  |
| Ewe LWT value (\$/ha)    | 0    | 7            | 14    | 0    | 9            | 1.0   | 0    | 8                     | 7    | 0    | 8                     | 7    |
| Cattle price (\$/kg LW)  | 1.65 | 1.65         | 1.65  | 1.77 | 1.77         | 1.77  | 1.65 | 1.65                  | 1.65 | 1.77 | 1.77                  | 1.77 |
| Cattle value (\$/ha)     | 186  | 223          | 370   | 95   | 165          | 215   | 137  | 189                   | 285  | 144  | 197                   | 298  |
| Total revenue (\$/ha)    | 568  | 661          | 946   | 517  | 677          | 803   | 554  | 682                   | 888  | 533  | 657                   | 861  |
| Marginal costs           | 0    | 110          | 227   | 0    | 116          | 241   | 0    | 116                   | 241  | 0    | 113                   | 234  |
| Gross margin (\$/ha)     | 567  | 552          | 718   | 517  | 560          | 562   | 554  | 569                   | 654  | 533  | 544                   | 627  |
| Marginal benefit (\$/ha) |      | -\$16        | \$151 |      | 43           | 45    |      | 15                    | 100  |      | 11                    | 94   |
|                          |      |              |       |      |              |       |      |                       |      |      |                       |      |

### What was learnt

#### Year 1

Lamb growth rates did not appear to be compromised with the grazing pressure created in the higher stocked paddocks.

The advantages of getting additional weight onto ewes early in a summer dry environment vastly outweigh any cost of running heavier ewes.

First vears trial work was undertaken in an atypical season - need 3 years data for accuracy.

Pasture guality and growth changes are already being seen in the applied nitrogen paddocks as a result of the subdivision, nitrogen use and higher stocking rate.

It would be very difficult and impractical to extrapolate this trial (use of 120 kg N/ha) onto a whole farm basis on Castlepoint Station.

#### Year 2

Cattle and ewes are responsive to higher covers, lambs are not.

Within each year there was very little weight difference between treatments, indicating that lamb growth rates were not responsive to N treatment. The lamb LWG/ha was better in the 60 and 120 kg N treatments as a result of the higher stocking rates - more lambs on the ground.

Good liveweight gains recorded in both ewes and cattle on the low covers.

It would be difficult to manage a whole farm in the same way the trial plots were managed.

Using N to alleviate a feed pinch may be profitable. Using N to lift stocking rate on 12 month basis probably not.

# Wise Use of Nitrogen on Hill Country Pastures Wairarapa



# Whole farm modelling

#### Whole Farm Modelling Analysis (2006) - Base Model vs 120 N Bulls

Undertaken to investigate the economics and practicability on a large scale on Castlepoint Station.

600 ha of northerly slopes receiving a 120 kg N/ha hit of nitrogen in the early spring (response rate 13 kg DM/kg N). The overall use of N changed from 14 to 40 kg N/ha on a whole farm basis.

On the 600 ha of northerly slopes, ewe stocking rate would increase from 5.5 ewes/ha to 7.8 ewes/ha (no change in overall ewe numbers). Stocking rates would decrease on the rest of the slopes so that all ewes were 1.6 kg heavier at weaning and had a 2.0% higher lambing percentage. No effect on lamb LWG.

On high N northerly slopes an extra 0.85 bulls/ha would be set-stocked onto northerly lambing country on 8<sup>th</sup> September.

Bulls purchased at beginning of May at 160 kg and sold late November @ 342 kg.

Cost of N \$1.43, bull margin \$251, store ram lamb price in December \$1.52/kg LW.

|             | Gro    | ss margin |       | venue<br>g DM | Consumed<br>feed |
|-------------|--------|-----------|-------|---------------|------------------|
| Model       | Per ha | Per kg DM | Sheep | Cattle        | kg DM/ha         |
| Base        | 569    | 9.27      | 13.2  | 11.0          | 6135             |
| 120 N bulls | 576    | 9.08      | 13.1  | 12.1          | 6467             |

# Results

On Castlepoint shifting from 14 to 40 kg N when N priced at \$1.43/kg N gives a small improvement in Gross margin per ha of \$7/ha.

On a practical side this whole farm approach would be very labour intensive and climatically risk adverse. A total of 510 bulls would need to be sourced to stock the 600 ha at 0.85 bulls/ha. Additional feed costs of running extra animal would decrease the returns per kg eaten further.

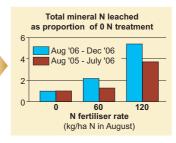
There is an environmental cost in terms of increased N leaching due to the increased number of cattle wintered on high N treatments. Given the very small improvement in economics, do the returns justify the increased environmental risks?



The project team wishes to acknowledge the funders:

This focus farm project also received additional funding from Meat and Wool New Zealand and the Greater Wellington Regional Council.

# Leachate results


The 60 N paddocks leached 1.3x as much N as the 0 N fertiliser paddocks in Year 1 and 2x the amount in first quarter of Year 2.

The 120 N paddocks leached 3.5x as much N as the 0 N fertiliser paddocks in Year 1 and 5.5x the amount in first quarter of Year 2.

 $\blacksquare$  There is much less ammonium-N (NH\_4-N) leaching so far this year than at the same time last year.

Amounts of nitrate-N (NO<sub>3</sub>-N) leaching so far this year are similar to that leached over the same period last year.

 Overall amounts of mineral N leaching (ammonium and nitrate) are less than at the same time last year.





# The first year and quarter of the three year trial

Applying fertiliser N in early August increases mineral N leaching compared to not applying any fertiliser N.

The increase in mineral N leaching as the fertiliser N application rate is increased has an exponential relationship.

These results are consistent with other trials in New Zealand and overseas.

# Water sampling results

# Both years data combined

#### Ammonia

Concentrations prior to fertiliser application were typical of most Wairarapa rivers.

• Concentrations rose significantly immediately following application and decreased at each collection after that.

Large spike following application (0.4 g/m<sup>3</sup>). Returned to levels prior to treatment after 2-3 months.

Increased stock units brought into trial paddocks could contribute to increased ammonia concentrations.

All values were below guideline levels for fish toxicity.

### Nitrate

Increased downstream from forest, through trial and pasture flats.

Increased before application as conditions wetted up. No significant change after application. Decreased as conditions dried and stream flow decreased.

Results are considered to reflect overall landuse rather than urea application.

Concentrations higher than guideline value to avoid nuisance algal growth (0.04-0.1 g/m<sup>3</sup>).

Similar/lower concentrations to many Wairarapa rivers and tributaries.

Estimates of N loss post-application in 2006, based on the actual data collected, have indicated that 6 kg of ammonia was lost between the top and bottom of the trial, which equates to 120 kg of urea (worst case scenario). 4000 kg of urea was applied to trial paddocks, and some to paddocks on other side of stream.

This would indicate that only 3% of the urea was lost into the waterway.

agresearch

Farming, Food and Health. First Te Ahuwhenua, Te Kai me te Whai Ora. Tuatahi

# Wise Use of Nitrogen on Hill Country Pastures: Nelson

#### Facilitator: Andrew Trolove agadvice@clear.net.nz

AgResearch Tom Fraser scientist: tom.fraser@agresearch.co.nz nterbury Agriculture Centre coln, New Zealand Ph. 03 325 9900



#### Context Farm: Glengyle Downs Owners: Ashley and Cathy Peter

Location: Dovedale, 20 km southwest of Nelson



Rainfall: Av. 1100 mm (43 inches).

*Grazing* General policy was to set stock the areas with twin *policy:* ewes prior to lambing, and bulls or heifers rotated through the areas according to pasture covers.

### Method

|         | 2004                                            | 2005                                              | 2006                                            |
|---------|-------------------------------------------------|---------------------------------------------------|-------------------------------------------------|
| Control | 6.3 ha                                          | 6.3 ha                                            | 6.3 ha                                          |
| Wise N  | 5 ha                                            | 16.5 ha                                           | 16.5 ha                                         |
|         | 100 kg urea<br>1 <i>0<sup>th</sup> Aug 2004</i> | 120 kg Ammo 31<br>10 <sup>th</sup> June 2005      | 100 kg urea<br>5 <sup>th</sup> May 2006         |
|         | 100 kg urea<br>19 <sup>th</sup> Sep 2004        | 120 kg Ammo 36<br><i>22<sup>nd</sup> Aug 2005</i> | 100 kg urea<br><i>28<sup>th</sup> July 2006</i> |
|         |                                                 | 120 kg Ammo 31<br><i>26<sup>th</sup> Sep 2005</i> | 100 kg urea<br>24 <sup>th</sup> Sep 2006        |

The initial change from urea to Ammo fertiliser was due to a response the farm had to sulphur; however, this was changed back in 2006 to concentrate on the nitrogen aspect of the trial



Main farm, looking west fron

# Results

Ewe price into and out of the system was the same and cattle were grazed in the system on a liveweight gain basis.

|                              | Gross Ex    | penditur | e Gross     | Produc | t 3 yr av.   |
|------------------------------|-------------|----------|-------------|--------|--------------|
|                              | income / ha | / ha     | margin / ha | / ha   | GM / ha      |
| <b>2004 Control</b> (6.3 ha) | \$656       | \$52     | \$605       | 144    | \$614        |
| <b>Trial</b> (5 ha)          | \$912       | \$154    | \$758       | 260    | \$720        |
| <b>2005 Control</b> (6.3 ha) | \$660       | \$79     | \$581       | 121    | 3 yr av.     |
| <b>Trial</b> (16.5 ha)       | \$1025      | \$316    | \$709       | 332    | product / ha |
| <b>2006 Control</b> (6.3 ha) | \$728       | \$72     | \$655       | 198    | \$154        |
| <b>Trial</b> (16.5 ha)       | \$1018      | \$299    | \$719       | 276    | \$298        |

|                                       | Av. lamb<br>price  | Av. lamb<br>weight  | kg DM eaten<br>/ kg product | Return<br>/ kg DM gro | Pasture<br>growth<br>wn kg DM/ha |
|---------------------------------------|--------------------|---------------------|-----------------------------|-----------------------|----------------------------------|
| 2004 Control (6.3 ha)<br>Trial (5 ha) | \$48.63<br>\$51.18 | 24.2<br>25.7        | 15.70<br>17.13              | \$0.25<br>\$0.19      | 2348<br>4068                     |
| 2005 Control (6.3 ha)                 | \$38.48            | 24.0                | 23.42                       | \$0.18                | 3313                             |
| Trial (16.5 ha) 2006 Control (6.3 ha) | \$42.49<br>\$50.42 | <b>26.4</b><br>29.9 | 18.64                       | \$0.11<br>\$0.18      | 6501<br>3646                     |
| Trial (16.5 ha)                       | \$51.55            | 29.7                | 18.84                       | \$0.12                | 5800                             |

#### Pasture growth 2005 (cage cuts)



#### 2005

~ ~ ~

| Response:   | kg DM/ha/d<br>per kg N |    |
|-------------|------------------------|----|
| June to Aug | 22.7                   | 73 |
| Aug to Sep  | 11.9                   | 35 |
| Sep to Dec  | 29.0                   | 66 |

#### Pasture growth 2006 (cage cuts)



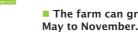
| Response:  | kg DM/ha/d<br>per kg N |    |
|------------|------------------------|----|
| May to Aug | 24.1                   | 94 |
| Aug to Sep | 9.0                    | 52 |
| Sep to Dec | 13.5                   | 68 |







Farming, Food and Health. First Te Ahuwhenua, Te Kai me te Whai Ora. Tuatahi


### What was learnt

The buying and selling margin of stock between July and November is harder to manage than utilising stock on the farm more efficiently.

- Nitrogen use to increase stock numbers is relatively easy.
- Moisture is a key part in achieving a good nitrogen response.

Farmlet scale nitrogen application is profitable by utilising the stock held on the farm. Any whole farm nitrogen application needs to be well planned and purchase decisions made before June to fully utilize the extra pasture grown.

- Choice of stock policy on nitrogen boosted grass has a big influence on profitability.
- The farm can grow up to 45% more pasture by applying nitrogen, over the period May to November.
- Financial result supports nitrogen on this block with this stock policy.



# Wise Use of Nitrogen on Hill Country Pastures: Marlborough

Results

#### Facilitator: Andrew Trolove agadvice@clear.net.nz

AgResearch Tom Fraser scientist: tom.fraser@agresearch.co.nz Canterbury Agriculture Centre Lincoln, New Zealand Ph. 03 325 9900



#### Context Farm: Breech Oak Property owner: Warrick Lissaman Location: Seddon, approx. 35 km Busceme 25 ha Lucerne 25 ha Effective 343 ha - Rainfall average: 650 mm with a range from 450-1000 mm. East0 (control) 12ha E1 7.8ha E1 7.8ha - Netemonstration area (east and west facing blocks): East0 (control) 12ha E1 7.8ha - Netemonstration area (east and west facing blocks): East0 (control) 12ha E1 7.8ha - Netemonstration area (east and west facing blocks): East0 (control) 12ha E1 7.8ha - Netemonstration area (east and west facing blocks): East0 (control) 12ha E1 7.8ha - Netemonstration area (east and west facing blocks): East0 (control) 12ha E1 7.8ha - Netemonstration area (east and west facing blocks): - State (east and west facing blocks): - Netemonstration area (east and west facing blocks): - Nete

Grazing policy: Cows, heifer cattle and ewes were rotated through blocks prior to lambing then ewes were set stocked, twin ewes in the E blocks and single ewes on the W blocks (due to the high chance of having to destock the west blocks early due to lack of rainfally). Cattle were also set stocked at this time. Cattle are moved out of the blocks if feed becomes tight, followed by the ewes (dependant on pasture covers).

#### Method 2005 2006 Control - W0 6.2 ha Control - W0 6.2 ha W1 - 9.1 ha W2 - 12.6 ha - 9.1 hz W2 - 12.6 ha Control - F0 12 ha Control - F0 12 ha E2 - 10.8 ha E1 - 7.8 ha E2 - 10.8 ha E1 - 7.8 ha *27<sup>th</sup> May 2005:* W1 & E1 - 75 kg urea/ha W2 & E2 -115 kg urea/ha 1*3<sup>th</sup> May 2006:* W1 & E1 - 75 kg urea/ha W2 & E2 -120 kg urea/ha 2<sup>nd</sup> Aug 2005: W1 & E1 - 75 kg urea/ha W2 & E2 - 120 kg urea/ha *27<sup>th</sup> July 2006:* W1 & E1 - 75 kg urea/ha W2 & E2 - 120 kg urea/ha





May 06 - top of E2 looking to bottom of E





Farming, Food and Health. First

|      |                                                                            | Gross<br>income / ha                                                                                                                    |                                                    | penditu<br>/ ha                                                                       | ire Gross<br>margin / ha                                                                                                                |                                                                                                    | oduct<br>ha                                           | 2 yr av.<br>GM / ha                                                                                | 2 yr av.<br>kg DM / ha                                                     |
|------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| 2005 | Control W0                                                                 | \$421                                                                                                                                   |                                                    | \$11                                                                                  | \$411                                                                                                                                   |                                                                                                    | 58                                                    | \$300                                                                                              | \$53                                                                       |
|      | W1                                                                         | \$376                                                                                                                                   |                                                    | \$201                                                                                 | \$175                                                                                                                                   |                                                                                                    | 16                                                    | \$279                                                                                              | \$156                                                                      |
|      | W2                                                                         | \$509                                                                                                                                   |                                                    | \$257                                                                                 | \$252                                                                                                                                   | 1                                                                                                  | 65                                                    | \$263                                                                                              | \$177                                                                      |
| 2006 | Control W0                                                                 | \$218                                                                                                                                   |                                                    | \$28                                                                                  | \$190                                                                                                                                   |                                                                                                    | 47                                                    |                                                                                                    |                                                                            |
|      | W1                                                                         | \$606                                                                                                                                   |                                                    | \$224                                                                                 | \$382                                                                                                                                   | 1                                                                                                  | 96                                                    |                                                                                                    |                                                                            |
|      | W2                                                                         | \$569                                                                                                                                   |                                                    | \$294                                                                                 | \$275                                                                                                                                   | 1                                                                                                  | 89                                                    |                                                                                                    |                                                                            |
|      |                                                                            | Av. lamb A                                                                                                                              |                                                    |                                                                                       |                                                                                                                                         | Retur                                                                                              |                                                       |                                                                                                    | vth 2 yr av.                                                               |
|      |                                                                            | price                                                                                                                                   | weig                                               | nt /κ                                                                                 | g product /kg                                                                                                                           | Divi gi                                                                                            | rown                                                  | kg DM/ha                                                                                           | kg DM / h                                                                  |
| 2005 | Control W0                                                                 | \$30                                                                                                                                    | 18.1                                               |                                                                                       | 57.32                                                                                                                                   | \$0.14                                                                                             |                                                       | 2927                                                                                               | 2754                                                                       |
|      | W1                                                                         | \$31                                                                                                                                    | 18.9                                               |                                                                                       | 21.48                                                                                                                                   | \$0.04                                                                                             |                                                       | 4367                                                                                               | 4147                                                                       |
| 2006 | W2                                                                         | \$31                                                                                                                                    | 19.0                                               | )                                                                                     | 21.75                                                                                                                                   | \$0.05                                                                                             |                                                       | 4727                                                                                               | 5316                                                                       |
| 2000 | Control W0                                                                 | \$54                                                                                                                                    | 30.3                                               | 3                                                                                     | 22.10                                                                                                                                   | \$0.07                                                                                             |                                                       | 2581                                                                                               |                                                                            |
|      | W1                                                                         | \$41                                                                                                                                    | 24.8                                               | 3                                                                                     | 16.89                                                                                                                                   | \$0.10                                                                                             |                                                       | 3926                                                                                               |                                                                            |
|      | W2                                                                         | 0.00                                                                                                                                    |                                                    |                                                                                       |                                                                                                                                         |                                                                                                    |                                                       |                                                                                                    |                                                                            |
|      |                                                                            | \$50                                                                                                                                    | 28.9                                               | )                                                                                     | 19.69                                                                                                                                   | \$0.05                                                                                             |                                                       | 5905                                                                                               |                                                                            |
|      |                                                                            | Gross                                                                                                                                   | Ex                                                 | penditu<br>/ ha                                                                       |                                                                                                                                         | Pro                                                                                                | oduct<br>ha                                           |                                                                                                    | 2 yr av.<br>kg DM / ha                                                     |
| 2005 | Control E0                                                                 | Gross                                                                                                                                   | Ex                                                 | penditu                                                                               | ire Gross                                                                                                                               | Prc<br>1 /                                                                                         | oduct                                                 | 2 yr av.                                                                                           |                                                                            |
| 2005 |                                                                            | Gross<br>income / ha                                                                                                                    | Ex                                                 | penditu<br>/ ha                                                                       | ire Gross<br>margin / ha                                                                                                                | Pro<br>1 /                                                                                         | oduct<br>ha                                           | 2 yr av.<br>GM / ha                                                                                | kg ĎM / ha                                                                 |
| 2005 | Control E0                                                                 | Gross<br>income / ha                                                                                                                    | Ex                                                 | penditu<br>/ ha<br>\$4                                                                | ire Gross<br>margin / ha<br>\$164                                                                                                       | Prc<br>1                                                                                           | oduct<br>ha                                           | 2 yr av.<br>GM / ha<br>\$162                                                                       | kg ĎM / ha<br>\$117                                                        |
|      | Control E0<br>E1                                                           | Gross<br>income / ha<br>\$168<br>\$681                                                                                                  | Ex                                                 | penditu<br>/ ha<br>\$4<br>\$209                                                       | rre Gross<br>margin / ha<br>\$164<br>\$472                                                                                              | Prc<br>1<br>1                                                                                      | oduct<br>ha                                           | 2 yr av.<br>GM / ha<br>\$162<br>\$442                                                              | kg ĎM / ha<br>\$117<br>\$142                                               |
|      | Control E0<br>E1<br>E2                                                     | Gross<br>income / ha<br>\$168<br>\$681<br>\$694                                                                                         | Ex                                                 | penditu<br>/ ha<br>\$4<br>\$209<br>\$335                                              | rre Gross<br>margin / ha<br>\$164<br>\$472<br>\$359                                                                                     | Prc<br>1<br>1<br>1                                                                                 | oduct<br>ha<br>118<br>112<br>191                      | 2 yr av.<br>GM / ha<br>\$162<br>\$442                                                              | kg ĎM / ha<br>\$117<br>\$142                                               |
|      | Control E0<br>E1<br>E2<br>Control E0                                       | Gross<br>income / ha<br>\$168<br>\$681<br>\$694<br>\$165                                                                                | Ex                                                 | penditu<br>/ ha<br>\$4<br>\$209<br>\$335<br>\$4                                       | rre Gross<br>margin / ha<br>\$164<br>\$472<br>\$359<br>\$161                                                                            | Prc<br>1<br>1<br>1<br>1                                                                            | oduct<br>ha<br>118<br>112<br>191                      | 2 yr av.<br>GM / ha<br>\$162<br>\$442                                                              | kg ĎM / ha<br>\$117<br>\$142                                               |
|      | Control E0<br>E1<br>E2<br>Control E0<br>E1                                 | Gross<br>income / ha<br>\$168<br>\$681<br>\$694<br>\$165<br>\$604<br>\$685<br>Av. lamb A                                                | Ex                                                 | penditu<br>/ ha<br>\$209<br>\$335<br>\$4<br>\$192<br>\$286<br>mb kg                   | rre Gross<br>margin / ha<br>\$164<br>\$472<br>\$359<br>\$161<br>\$412<br>\$399                                                          | Prc<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                               | oduct<br>ha<br>118<br>112<br>191<br>117<br>173<br>174 | 2 yr av.<br>GM / ha<br>\$162<br>\$442                                                              | kg ĎM / ha<br>\$117<br>\$142<br>\$183<br>vth 2 yr av.                      |
| 2006 | Control E0<br>E1<br>E2<br>Control E0<br>E1                                 | Gross<br>income / ha<br>\$168<br>\$681<br>\$694<br>\$165<br>\$604<br>\$685<br>Av. lamb A                                                | Ex                                                 | penditu<br>/ ha<br>\$4<br>\$209<br>\$335<br>\$4<br>\$192<br>\$286<br>mb kg<br>ht / kg | rre Gross<br>margin / ha<br>\$164<br>\$472<br>\$359<br>\$161<br>\$412<br>\$399<br>DM eaten                                              | Prc<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                               | oduct<br>ha<br>118<br>112<br>191<br>173<br>173<br>174 | 2 yr av.<br>GM / ha<br>\$162<br>\$442<br>\$379                                                     | kg ĎM / ha<br>\$117<br>\$142<br>\$183<br>vth 2 yr av.                      |
| 2006 | Control E0<br>E1<br>E2<br>Control E0<br>E1<br>E2                           | Gross<br>income / ha<br>\$168<br>\$681<br>\$694<br>\$165<br>\$604<br>\$685<br>Av. lamb A<br>price                                       | Ex<br>a<br>Av. lai<br>weig                         | penditu<br>/ ha<br>\$4<br>\$209<br>\$335<br>\$4<br>\$192<br>\$286<br>mb kg<br>ht / kg | re Gross<br>margin / ha<br>\$164<br>\$472<br>\$359<br>\$161<br>\$412<br>\$399<br>DM eaten I<br>g product / kg                           | Prc<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>2<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | oduct<br>ha<br>118<br>112<br>191<br>177<br>173<br>174 | 2 yr av.<br>GM / ha<br>\$162<br>\$442<br>\$379                                                     | kg ĎM / ha<br>\$117<br>\$142<br>\$183<br>vth 2 yr av.<br>kg DM / h         |
| 2006 | Control E0<br>E1<br>E2<br>Control E0<br>E1<br>E2<br>Control E0             | Gross<br>income / ha<br>\$168<br>\$681<br>\$694<br>\$165<br>\$604<br>\$685<br>Av. lamb A<br>price<br>\$30                               | Ex<br>a<br>Av. lai<br>weigi<br>18.1                | penditu<br>/ ha<br>\$209<br>\$335<br>\$4<br>\$192<br>\$286<br>mb kg<br>ht / kg        | rre Gross<br>margin / ha<br>\$164<br>\$472<br>\$359<br>\$161<br>\$412<br>\$399<br>DM eaten   g<br>groduct / kg<br>7.96                  | Prc<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                               | oduct<br>ha<br>118<br>112<br>191<br>177<br>173<br>174 | 2 yr av.<br>GM / ha<br>\$162<br>\$442<br>\$379<br>Pasture grov<br>kg DM/ha<br>3742                 | kg ĎM / ha<br>\$117<br>\$142<br>\$183<br>vth 2 yr av.<br>kg DM / h<br>3525 |
| 2006 | Control E0<br>E1<br>E2<br>Control E0<br>E1<br>E2                           | Gross<br>income / ha<br>\$168<br>\$681<br>\$694<br>\$165<br>\$604<br>\$685<br>Av. lamb A<br>price<br>\$30<br>\$22                       | Ex<br>3<br>Av. la<br>weig<br>18.1<br>13.1          | penditu<br>/ ha<br>\$209<br>\$335<br>\$4<br>\$192<br>\$286<br>mb kg<br>ht / kg        | rre Gross<br>margin / ha<br>\$164<br>\$472<br>\$359<br>\$161<br>\$412<br>\$399<br>DM eaten In<br>groduct / kg<br>7.96<br>33.44          | Prc<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                               | oduct<br>ha<br>118<br>112<br>991<br>117<br>173<br>174 | 2 yr av.<br>GM / ha<br>\$162<br>\$442<br>\$379<br>Pasture grov<br>kg DM/ha<br>3742<br>4755         | kg ĎM / ha<br>\$117<br>\$142<br>\$183<br>vth 2 yr av.<br>kg DM / h         |
| 2006 | Control E0<br>E1<br>E2<br>Control E0<br>E1<br>E2<br>Control E0<br>E1<br>E2 | Gross<br>income / ha<br>\$168<br>\$681<br>\$694<br>\$685<br>\$404<br>\$685<br>\$404<br>\$685<br>\$404<br>\$685<br>\$300<br>\$22<br>\$50 | Ex<br>a<br>Av. lai<br>weig<br>18.1<br>13.1<br>21.1 | penditu<br>/ ha<br>\$209<br>\$335<br>\$4<br>\$192<br>\$286<br>mb kg<br>ht / kg        | re Gross<br>margin / ha<br>\$164<br>\$472<br>\$359<br>\$161<br>\$412<br>\$399<br>DM eaten   g<br>product / kg<br>7.96<br>33.44<br>19.24 | Prc<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                               | oduct<br>ha<br>118<br>112<br>191<br>177<br>773<br>774 | 2 yr av.<br>GM / ha<br>\$162<br>\$442<br>\$379<br>Pasture grov<br>kg DM/ha<br>3742<br>4755<br>4999 | kg ĎM / ha<br>\$117<br>\$142<br>\$183<br>vth 2 yr av.<br>kg DM / h         |

|                        | 13 May 06 to 4 Aug 06 |                     |                        | 5 Aug 06 to 5 Dec 06               |                     |                        | Total: 13 May 06 to 5 Dec 06       |                      |                        |                                                                                                                                                                                  |
|------------------------|-----------------------|---------------------|------------------------|------------------------------------|---------------------|------------------------|------------------------------------|----------------------|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        | Pasture<br>grown      | N<br>used           | Response<br>kg DM/kg N | Pasture<br>grown                   | N<br>used           | Response<br>kg DM/kg N | Pasture<br>grown                   | N<br>used            | Response<br>kg DM/kg N | 2005 C/N ratio:                                                                                                                                                                  |
| Control W0<br>W1<br>W2 | 292<br>287<br>1302    | <b>34.5</b><br>55.2 | -0.1<br>18.3           | 1255<br>3109<br>6212               | <b>34.5</b><br>55.2 | 53.7<br>89.8           | 1548<br>3396<br>7514               | <b>69.0</b><br>110.4 | 26.8<br>54.0           | West = 12<br>East = 11<br>Note: E2, cage rubbed &<br>shifted in Sept cut.<br>Cages not set up until 28th<br>May, therefore July cut is<br>under reading actual pasture<br>grown. |
| Control E0<br>E1<br>E2 | 268<br>979<br>629     | 34.5<br>55.2        | 20.6<br>6.5            | <b>2572</b><br><b>4164</b><br>3722 | 34.5<br>55.2        | 46.1<br>20.8           | <b>2840</b><br><b>5144</b><br>4351 | 69.0<br>110.4        | <b>33.4</b><br>13.7    |                                                                                                                                                                                  |

### What was learnt

One of the goals was to increase financial returns by 20% through nitrogen use; as a rule this was exceeded on the respective blocks.

On average the east blocks grew a similar amount of pasture to the west blocks but with less variation between years and treatments.

The eastern blocks had lower nitrogen responses but more reliable profit with nitrogen use.

The most consistent returns seem to be that of 75 kg urea/ha.

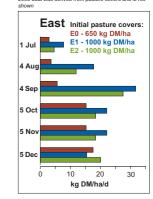
Pasture cut responses in 2006 far exceeded those anticipated; disappointingly we did not cut pastures in 2005 consistently to compare the pasture cut nitrogen responses between years.

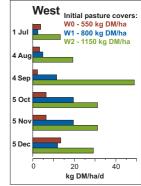
Pasture cover estimation on the nitrogen blocks was difficult due to the pasture density. As a short term response the warmer western faces responded very well to N, therefore in feed shortage situations N applications to the western facing country would seem the best bang for buck.

2005 results are skewed because of the "standing hay" that was in the E blocks as the trial was set up, positively influencing the W0 2005 result.

There is a big increase in product produced between the Control blocks and the 75 kg urea blocks. This increase diminished on the 120 kg urea blocks.

Fertiliser application in May achieved good responses on the east facing blocks, perhaps this acted as a type of antifreeze, whereas the west blocks remained warmer (note: only one years data).


Nitrogen recipe:


Up to 75 kg urea applied at the end of July achieved good nitrogen responses on east and west facing country.
N application on the eastern blocks in 2005 and 2006 resulted in a

- N application on the eastern blocks in 2005 and 2006 resulted in a significant increase in profit.

- There may be an opportunity to use N on the east block in May and west blocks in July for best return.





