Feeding the world’s growing population

New Zealand’s reputation as a quality food producer is growing.

Optimising food production

Over the next 50 years farmers around the world will need to produce more food than has been grown over the past 10,000 years.

Best use from a limited resource

Fertiliser helps farmers produce food efficiently by replenishing the soil. But fertiliser needs to be used responsibly.

Responsible and sustainable nutrient management

The Fertiliser Association invests in research and tools to ensure farm profitability while minimising nutrient losses to the environment.

The Fertiliser Association of New Zealand promotes and encourages responsible and scientifically-based nutrient management.

Read more

Timing of application

Fertiliser application should be timed to achieve maximum plant uptake, thereby reducing losses of nutrient to the environment. Ideal timing will be affected by the solubility (mobility) of the nutrient or fertiliser used, crop stage and rate of growth (and therefore its nutrient demand) and the nutrient fixing capability of the soil. Consider also the amount of rainfall and/or irrigation experienced or expected.

Applying fertiliser long before the plant will take up the nutrient exposes the nutrient to potential loss. This is particularly so with nitrogen fertilisers. Maximum responses and minimal nutrient losses will usually occur if fertiliser is applied when plants are growing rapidly. It is especially important to apply highly mobile nutrients at times when plants are actively growing to avoid losses to the environment between application and plant uptake, and thus to maximise the return on the investment. This is particularly important when highly soluble nutrients are applied in high rainfall or irrigation situations.

Application of fertiliser in relation to soil and air temperatures is also important because these conditions affect plant growth and hence nutrient use. For example, applying nitrogen fertiliser to ryegrass when soil temperatures are less than 6°C and falling is likely to be ineffective in stimulating pasture growth because ryegrass stops growing at soil temperatures below 4°C. If it will be some time before temperatures rise and the ryegrass starts to grow again (and take up the nitrogen), the nitrate may be lost through leaching. Nitrogen fertiliser application should be delayed until the pasture is actively growing, especially if considerable rainfall is expected in the meantime.

Fertiliser often requires water to move it to a site where it can be taken up by plants and, in the case of nitrogen, where it is protected from gaseous losses. Timing of fertiliser application in relation to irrigation or rainfall can be critical to determining the risk of gaseous loss.

 

The Fertiliser Association of New Zealand and Dairy NZ funded development of the Nutrient Management Adviser Certification Programme (NMACP). This industry-wide certification aims to ensure that advisers have the learning, experience and capability to give sound nutrient advice.

Find out more

6 July 2022

The British Society of Soil Science has published a research article in the Soil Use and Management Journal detailing the latest analysed data from the long-running Winchmore Fertiliser Trial in Canterbury.

The paper was written by Driss Touhami of the Faculty of Agriculture and Life Sciences, Lincoln University. Touhami is also a member of the AgrioBioSciences Program, Mohammed VI Polytechnic University in Ben Guerir, Morocco.

The paper, titled "Effects of long-term phosphorus fertilizer inputs and seasonal conditions on organic soil phosphorus cycling under grazed pasture", was co-authored by Leo Condron Richard McDowell and Ray Moss.  The report can be viewed here.

Read more about the long-running Winchmore trial on the FANZ website here.


25 January 2022

Final-year Lincoln University PhD candidate Kirstin Deuss is the 2021 recipient of the NZ Society of Soil Science/Fertiliser Association of NZ Postgraduate Bursary Award.

The award recognises the efforts and present (or likely) contribution to New Zealand soil science arising from a doctorate study. It carries a $5,000 one-year stipend.

Kirstin holds a BSC in Biomedical Science from Victoria University of Wellington and an MSC in Horticultural Science from the Technical University of Munich, Free University of Bozen (Italy) and the University of Bologna.

Her postgraduate research has seen her lead a long-term field study on soil and catchment hydrology in Southland. The findings will help understand the role mole and tile drains play in Southland’s unique landscape.

“I’m thrilled to have been selected as the recipient of the NZSSS Fertiliser Association Postgraduate Bursary, it is an honour that I will cherish for the rest of my career,” says Kirstin. “I love working with soils and my career objective is to apply my field, research and management skills towards supporting the sustainable management of New Zealand’s soil resources.”

“My PhD has been challenging but also so rewarding, and this award is a real confidence boost as I prepare to start my new career at Manaaki Whenua Landcare Research in February. I wouldn't be where I am without the support of my many great mentors, friends and colleagues, who have given me so much of their time and energy to help turn ideas into reality and put it all into the written word!

 “It's truly been the best experience of my life and I am really looking forward to where it is going to take me.”

 Kirstin was nominated by Peter Almond, Associate Professor, Department of Soil and Physical Sciences at Lincoln University. He described her to the judging panel as a “highly adept scientist capable of complex quantitative analysis of soil-hydrological systems”.

“I think she is a deserving recipient.  The prestige of the award would further her goal of securing a position working professionally in soil science in New Zealand so that she can contribute to environmental sustainability of our primary industries.”

Fertiliser Association chief executive Vera Power described Kirstin’s research as “hugely important”.

“The more we can understand what’s happening in our soils and catchments, the better placed our primary sector will be to improve farm management, all while protecting the environment.”  

Sign up for our Newsletter

Stay in touch with the latest fertiliser industry news and research

Sign up

MoST Content Management V3.0.8249